A COMPARISON OF DEEP LEARNING METHODS FOR ENVIRONMENTAL SOUND DETECTION

PRESENTER
JUNCHENG (BILLY) LI

Juncheng Li, Wei Dai, Florian Metze, Shuhui Qu, and Samarjit Das

AUTHORS

VV

Carnegie Mellon University

OVERVIEW

1) INTRODUCTION

- Environmental Sounds
- Dataset
- Feature Extraction

2) TRADITIONAL METHOD

- Gaussian Mixture Model Identity Vector

DCASE CHALLENGE

(Detection and Classification of **Acoustic Scenes** and Events 2016)

3) DEEP LEARNING METHOD

- Deep Neural Network Recurrent Neural Network Convolutional Neural Network
- Model Ensembling

4) CONCLUSION

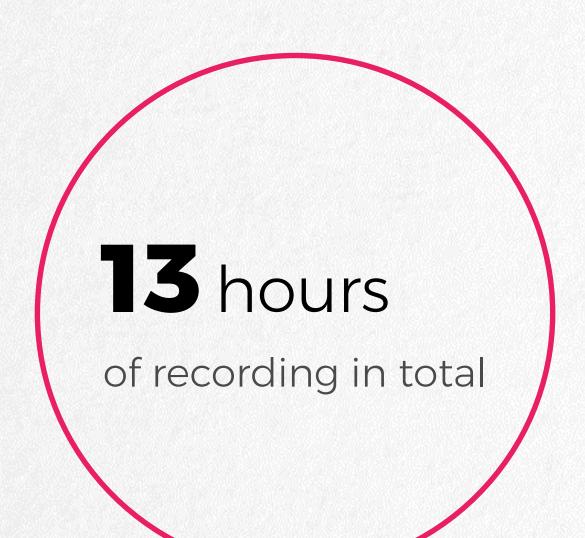
- Discussion
- Conclusion

JUNCHENG (BILLY) LI **Carnegie Mellon University**

ENVIRONMENTAL SOUNDS

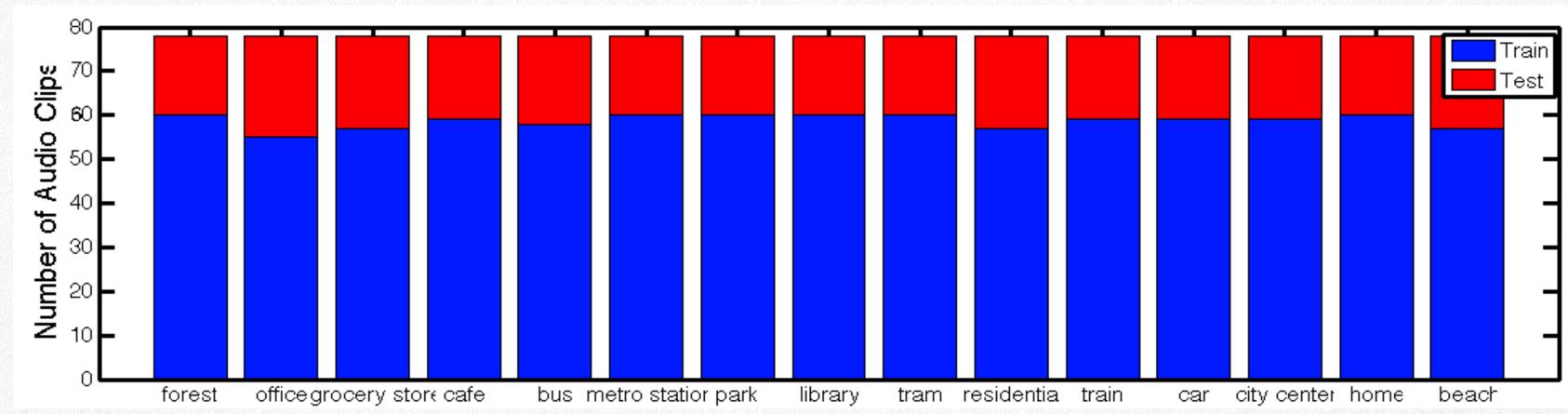
A COMPARISON OF DEEP LEARNING METHODS FOR ENVIRONMENTAL SOUND DETECTION | JUNCHENG (BILLY) LI | BOSCH | Carnegie Mellon University

INTRODUCTION



- 1170 clips development set:
 - 4-fold cross validation

 - 30 seconds / clip, ~59 clips training per class
- **390** clips evaluation set
- 24-bit audio, 2 channels, sampling rate 44100Hz



• 880 for training, 290 for testing

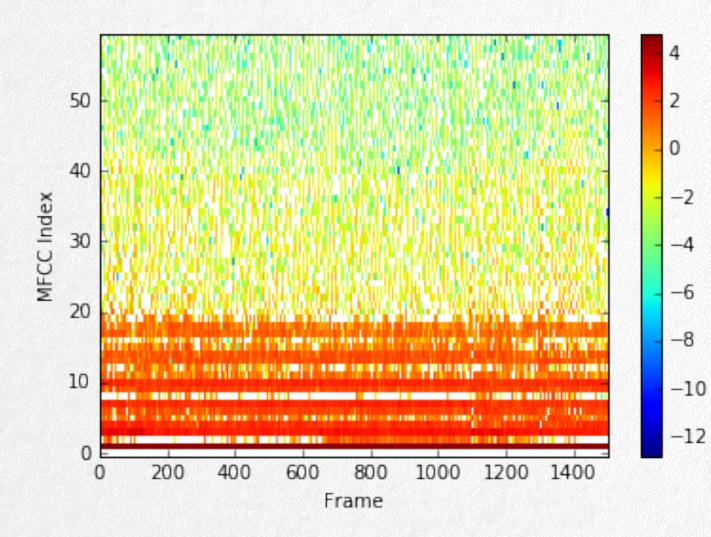
JUNCHENG (BILLY) LI BOSCH **Carnegie Mellon University**

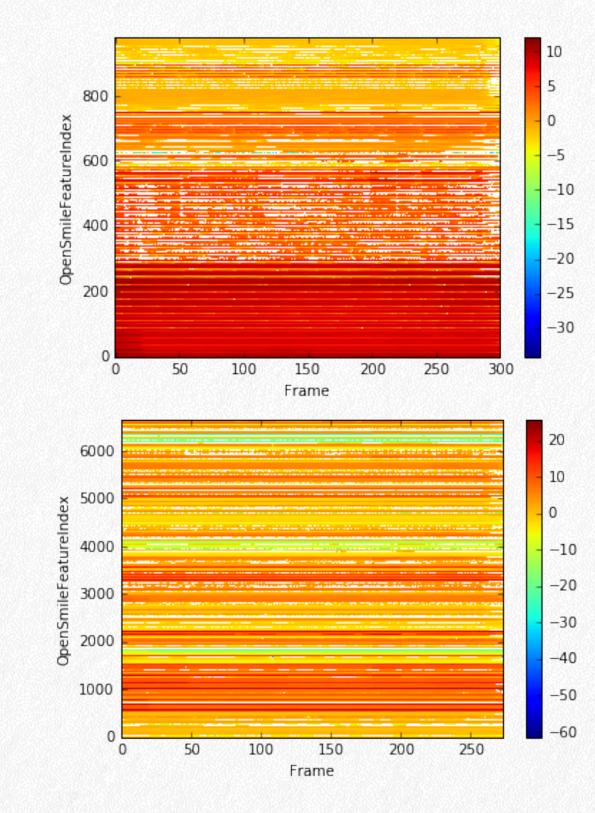
SIGNAL PROCESSING FEATURE EXTRACTION

MFCC

Mel-frequency cepstral coefficient (61-dim)

- Monaural MFCC : 23 window 20ms, excluding 0th, including 1st 2nd order difference
- Binaural MFCC (BiMFCC) : left, right, difference





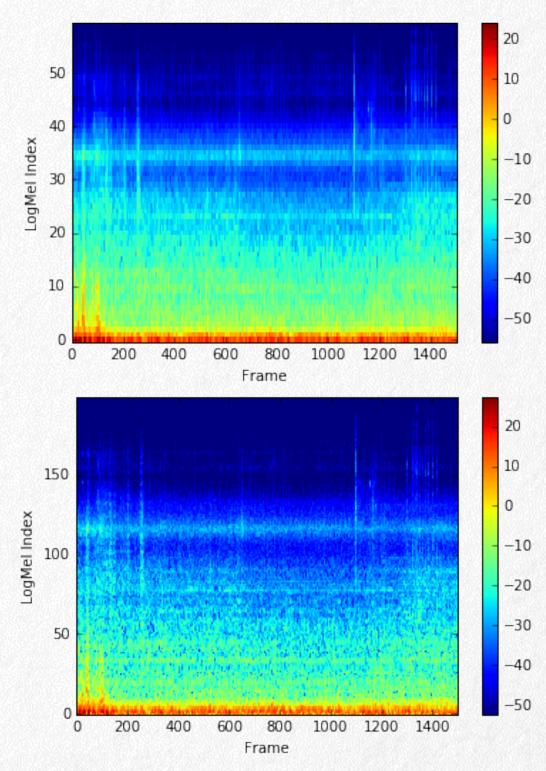
OPENSMILE

[Eyben et al ,2010] (983-dim, 6573-dim)

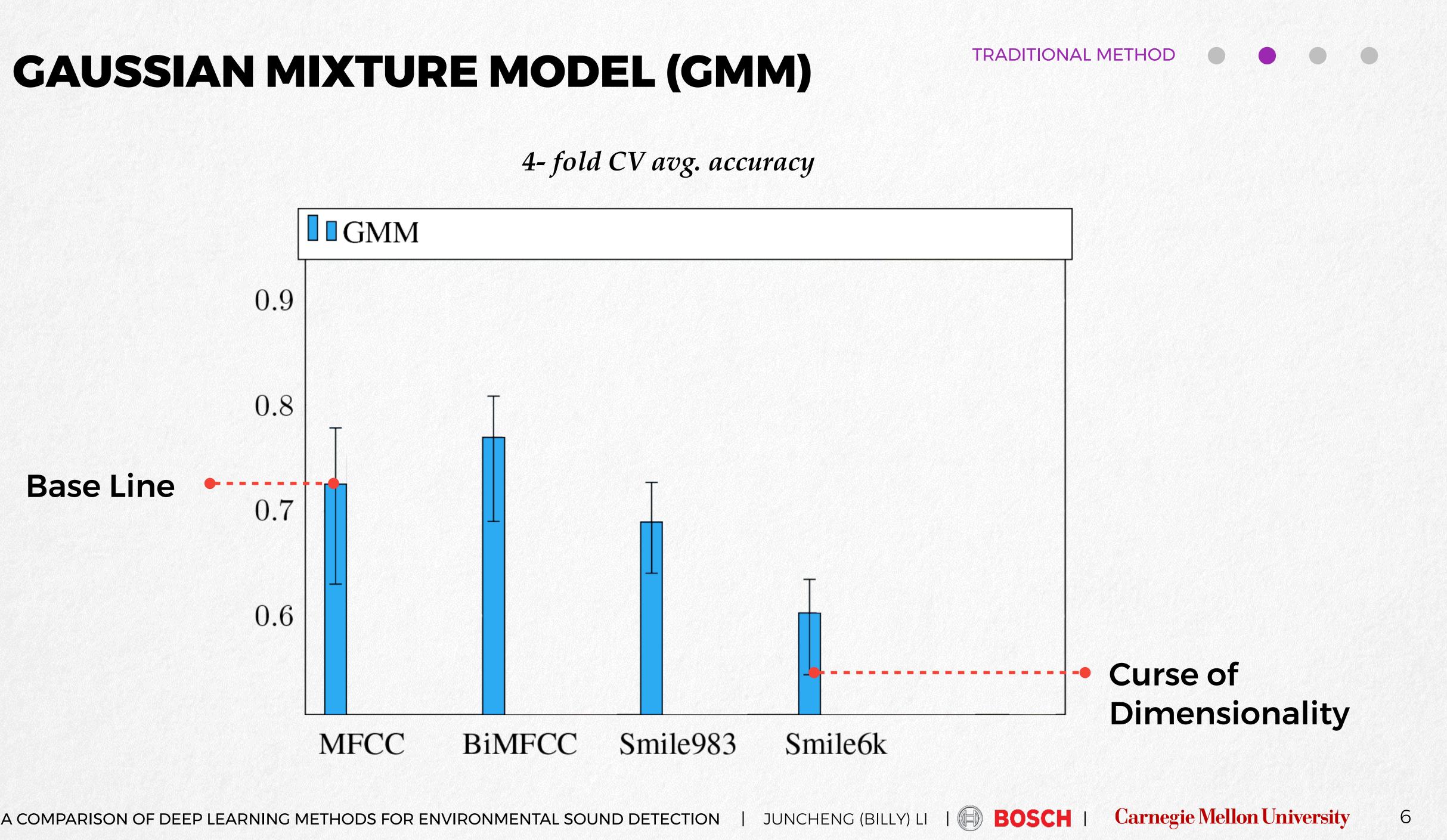
LOGMEL

(60-dim, 200-dim)Computed by LibROSA

· 60 and 200 mel filters



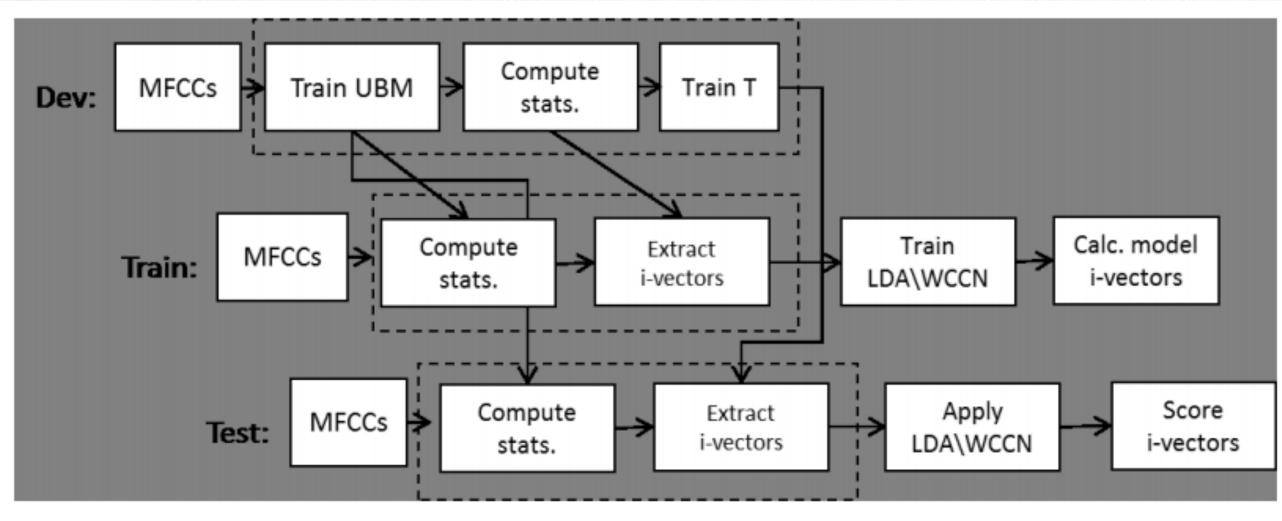
JUNCHENG (BILLY) LI



A COMPARISON OF DEEP LEARNING METHODS FOR ENVIRONMENTAL SOUND DETECTION

IDENTITY VECTOR (I-VECTOR)

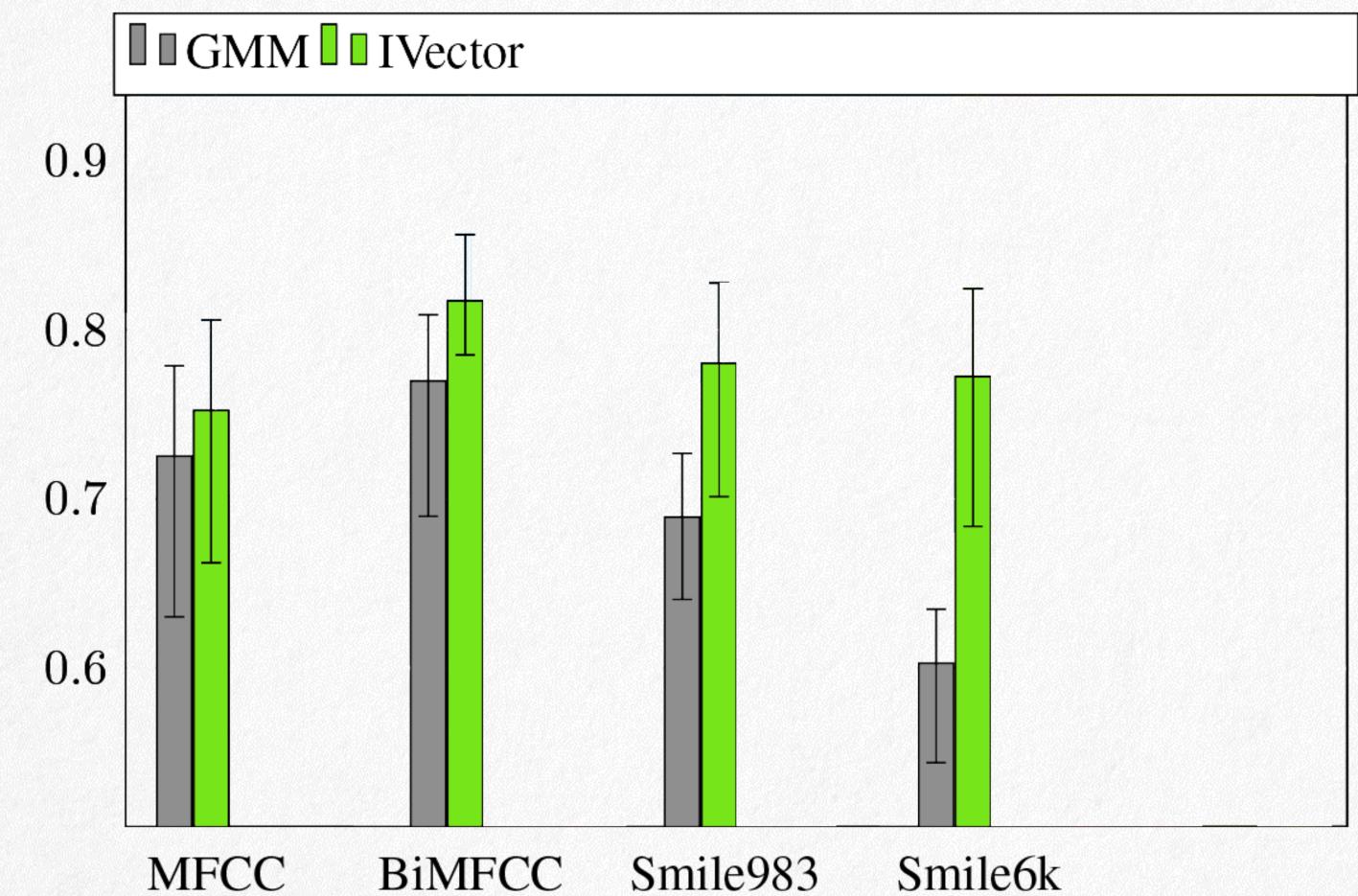
- State-of-the-art technique in the speaker verification field Universal background model (UBM), GMM with 256 components
- Mean Super Vector $M = m + T \cdot y$,
- Use Kaldi Toolkit and perform Linear Discriminant Analysis (LDA), and Within Class Covariance Normalization (WCCN)
- Each projected test i-vector is scored (cosine similarity) against all model i-vectors.



Carnegie Mellon University JUNCHENG (BILLY) LI A COMPARISON OF DEEP LEARNING METHODS FOR ENVIRONMENTAL SOUND DETECTION

Block-diagram of Our I-vector Pipeline

IDENTITY VECTOR (I-VECTOR)



Carnegie Mellon University JUNCHENG (BILLY) LI A COMPARISON OF DEEP LEARNING METHODS FOR ENVIRONMENTAL SOUND DETECTION

TRADITIONAL METHOD

4- fold CV avg. accuracy

EXPERIMENT SETUP

A COMPARISON OF DEEP LEARNING METHODS FOR ENVIRONMENTAL SOUND DETECTION | JUNCHENG (BILLY) LI | BOSCH | Carnegie Mellon University

Hyper parameter Tuning

- Tuned #layers, layer size, activation, optimizer, dropout, batch norm
- Train >500 models

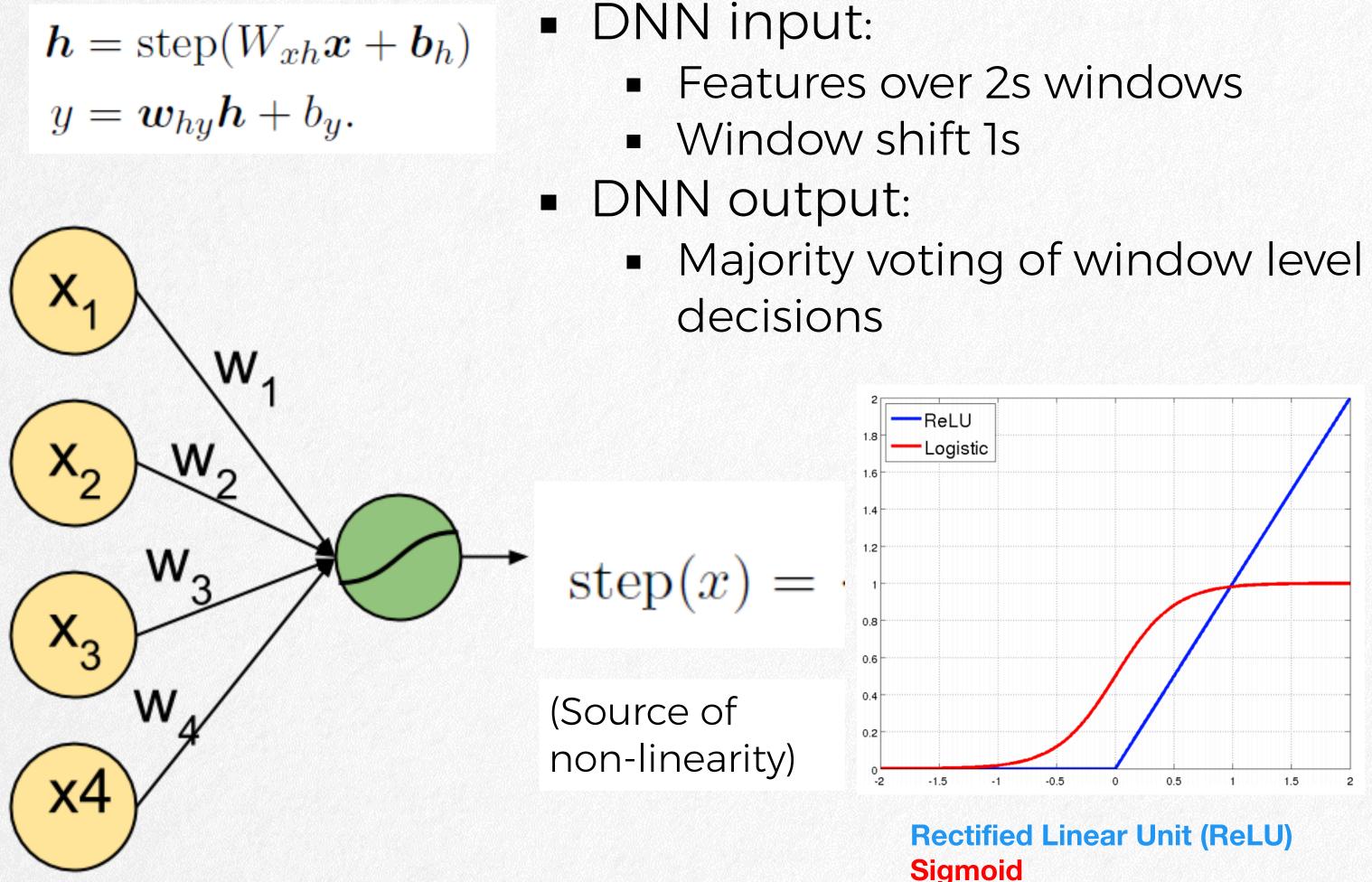
System Configuration

- 4 Titan X (single node)
- 128GB, 16 cores (Intel i7)

Framework

Tensorflow and Keras

MUILTI-LAYER PERCEPTRON



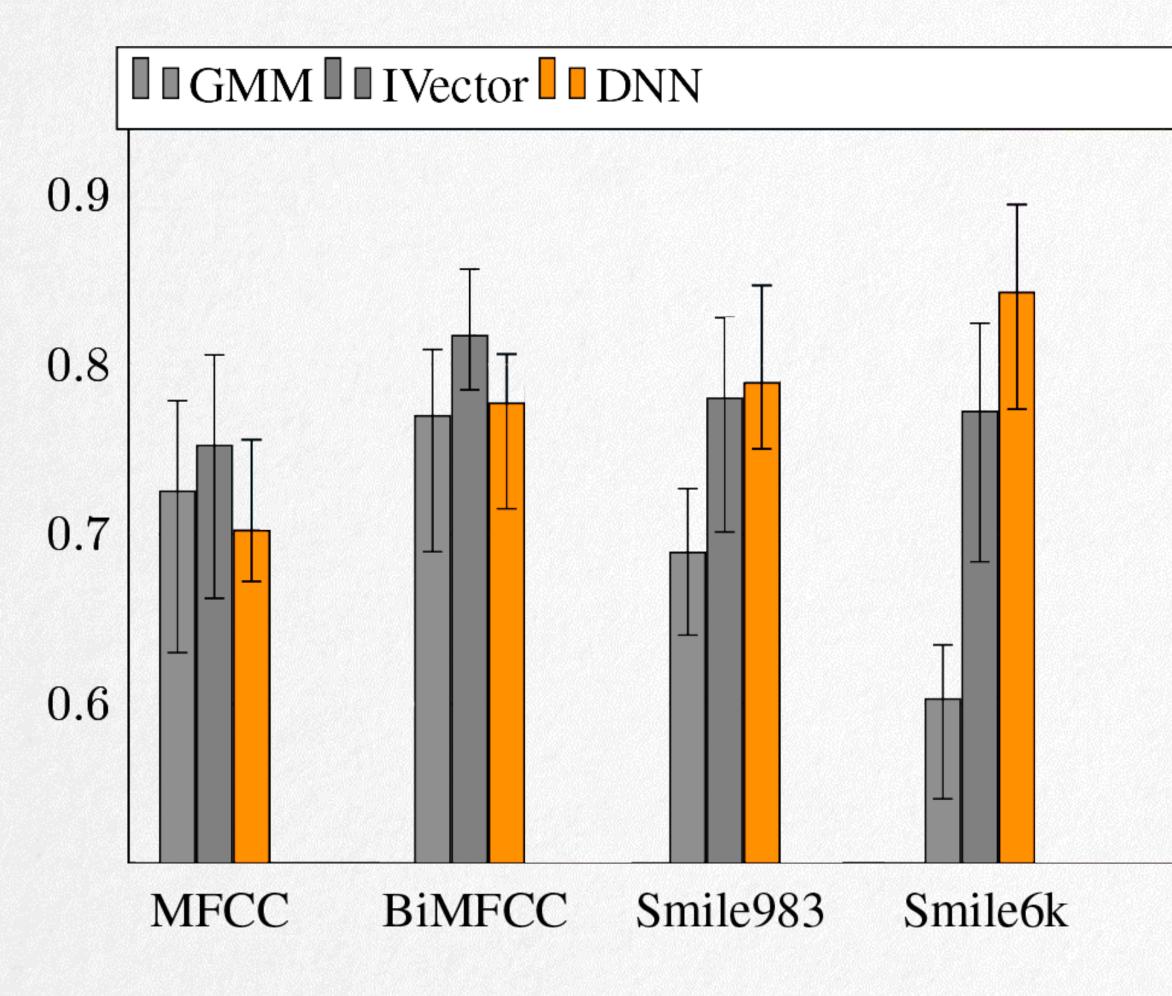
A COMPARISON OF DEEP LEARNING METHODS FOR ENVIRONMENTAL SOUND DETECTION JUNCHENG (BILLY) LI BOSCH **Carnegie Mellon University**

Model Specifications **DNN** Input **Dense 256 BN + Dropout 0.2 Dense 256 BN + Dropout 0.2 Dense 256 BN + Dropout 0.2 Dense 256 BN + Dropout 0.2** Softmax

BN: Batch Normalization ReLu: Rectified Linear Activation Function

DEEP NEURAL NETWORK (DNN)

4- fold CV avg. accuracy



JUNCHENG (BILLY) LI **Carnegie Mellon University** A COMPARISON OF DEEP LEARNING METHODS FOR ENVIRONMENTAL SOUND DETECTION BOSCH

Better Performance with Larger Features

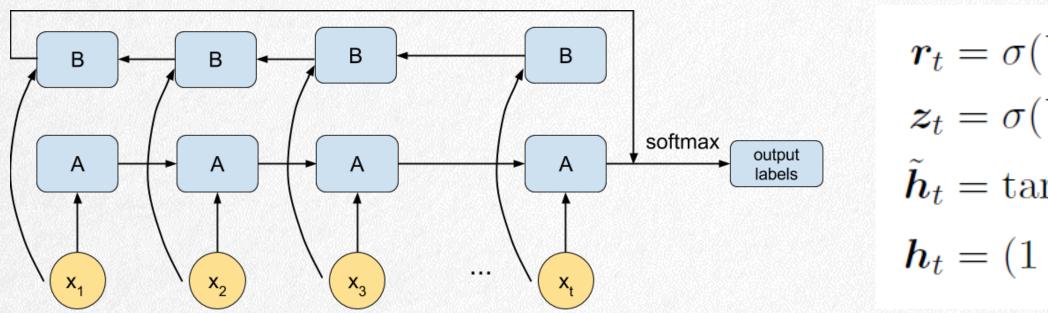
MFCC / BiMFCC: 12 layers / 1.1M params

Smile983: 10 layers / 1M params

Smile6k: 16 layers / 4.4M params

RECURRENT NEURAL NETWORK (RNN)

- Use Gated Recurrent Units (GRU)
 - Performs similarly to Long-Short Term Memory (LSTM) but faster
- Bi-directional RNN: Long-range context in both input directions



RNN Pipeline

Carnegie Mellon University A COMPARISON OF DEEP LEARNING METHODS FOR ENVIRONMENTAL SOUND DETECTION JUNCHENG (BILLY) LI BOSCH

DEEP LEARNING METHOD

 $\boldsymbol{r}_t = \sigma(W_{xr}\boldsymbol{x}_t + W_{hr}h_{t-1} + \boldsymbol{b}_r)$ $\boldsymbol{z}_t = \sigma(W_{xz}\boldsymbol{x}_t + W_{hz}h_{t-1} + \boldsymbol{b}_z)$ $\tilde{\boldsymbol{h}}_t = \tanh(W_{xh}\boldsymbol{x}_t + W_{hh}(\boldsymbol{r}_t \odot \boldsymbol{h}_{t-1}) + \boldsymbol{b}_h)$ $\boldsymbol{h}_t = (1 - \boldsymbol{z}_t)\boldsymbol{h}_{t-1} + \boldsymbol{z}_t \tilde{\boldsymbol{h}}_t.$

Model Specifications

RNN Input

GRU 512 forward

GRU 512 backward

Dropout 0.4

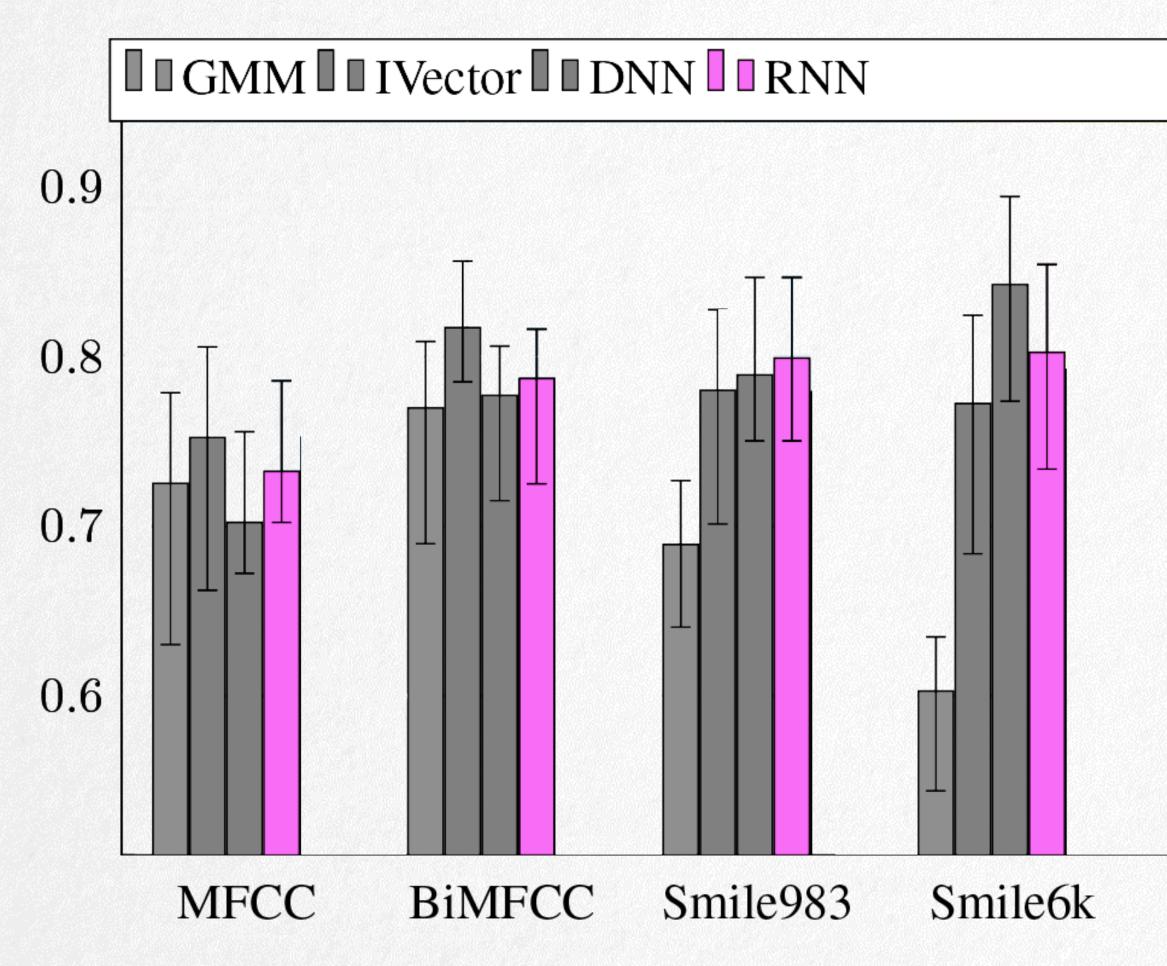
BN

Softmax

BN: Batch Normalization ReLu: Rectified Linear Activation Function

RECURRENT NEURAL NETWORK (RNN)

4- fold CV avg. accuracy



A COMPARISON OF DEEP LEARNING METHODS FOR ENVIRONMENTAL SOUND DETECTION | JUNCHENG (BILLY) LI | BOSCH | Carnegie Mellon University

DEEP LEARNING METHOD

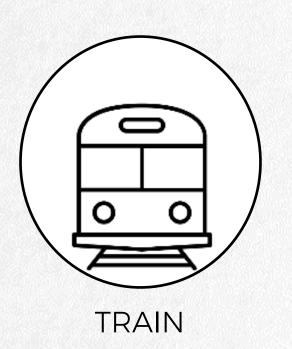
Better Performance with Larger Features

MFCC/BIMFCC: 4 layers / 50k params

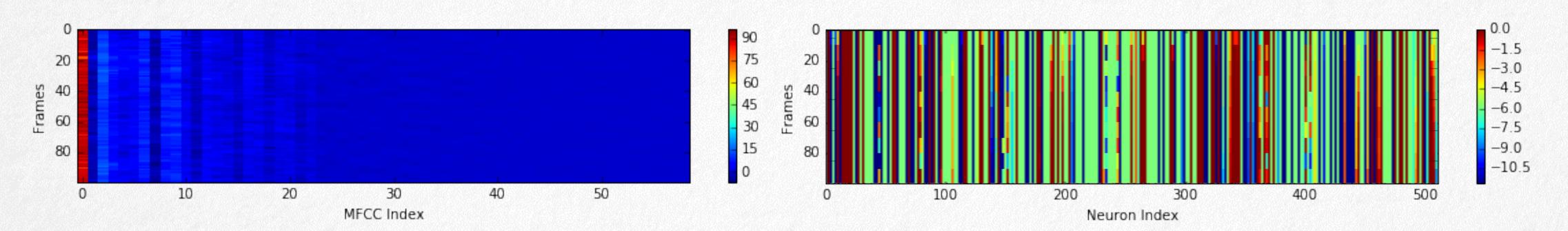
Smile983: 4 layers / 4.6M params

Smile6k: 4 layers / 26.8M params

RECURRENT NEURAL NETWORK (RNN) SOME OBSERVATIONS



- Train Audio Example:
 - Not enough variation in the audio signal



BiMFCC (61- dim) over 100 frames

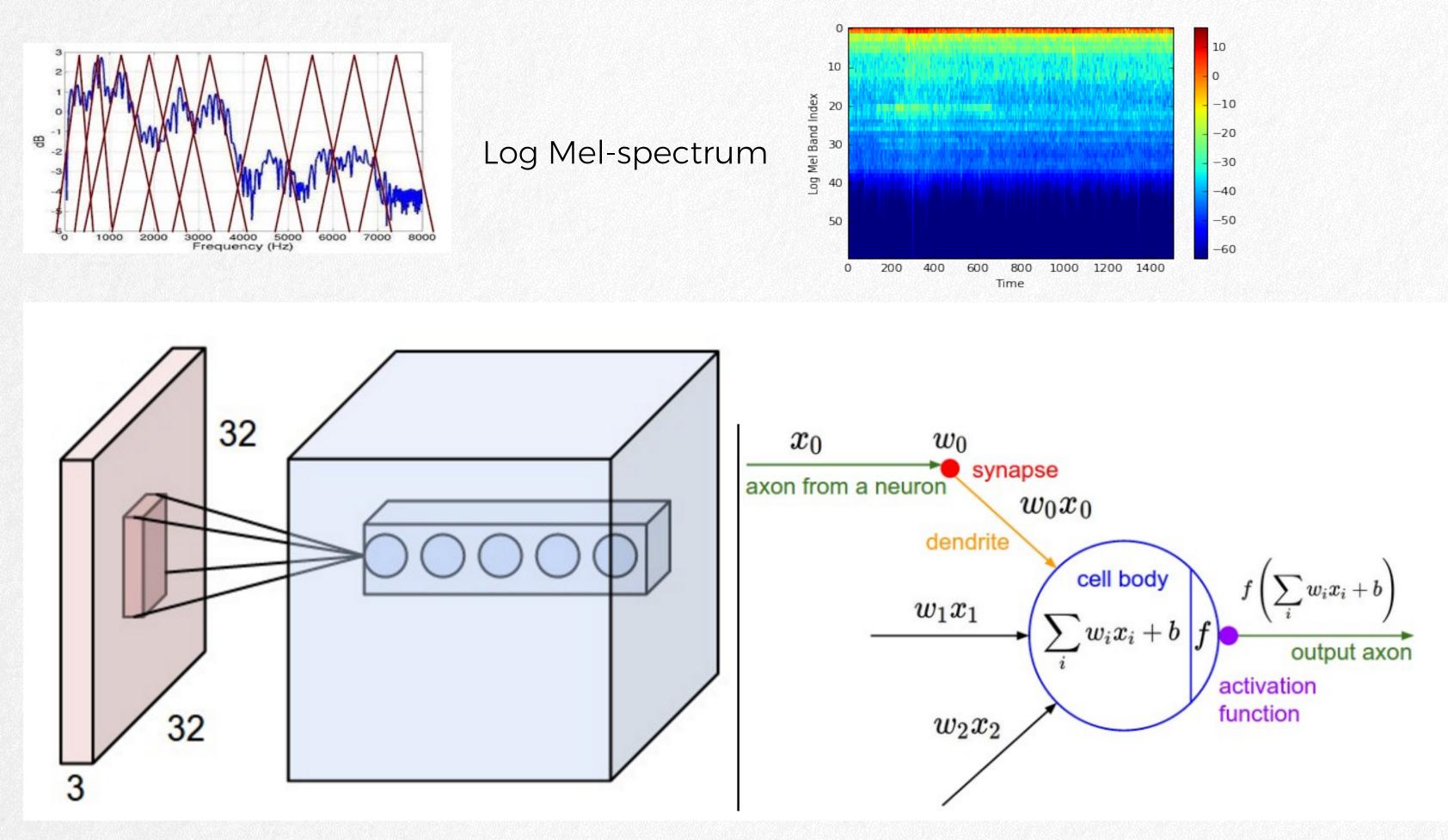
DEEP LEARNING METHOD

·RNN may work better on event-rich audio scenes

RNN Neuron (512- dim) Activation

JUNCHENG (BILLY) LI **Carnegie Mellon University**

CONVOLUTIONAL NEURAL NETWORK (CNN)



CNN Pipeline

A COMPARISON OF DEEP LEARNING METHODS FOR ENVIRONMENTAL SOUND DETECTION | JUNCHENG (BILLY) LI | BOSCH | Carnegie Mellon University

DEEP LEARNING METHOD

Model Specifications

CNN Input

32×3×3-BN-ReLu

32×3×3-BN-ReLu

MaxPool2×2+Dropout0.3

64×3×3-BN-ReLu

64×3×3-BN-ReLu

MaxPool2×2+Dropout0.3

128×3×3-BN-ReLu

128×3×3-BN-ReLu

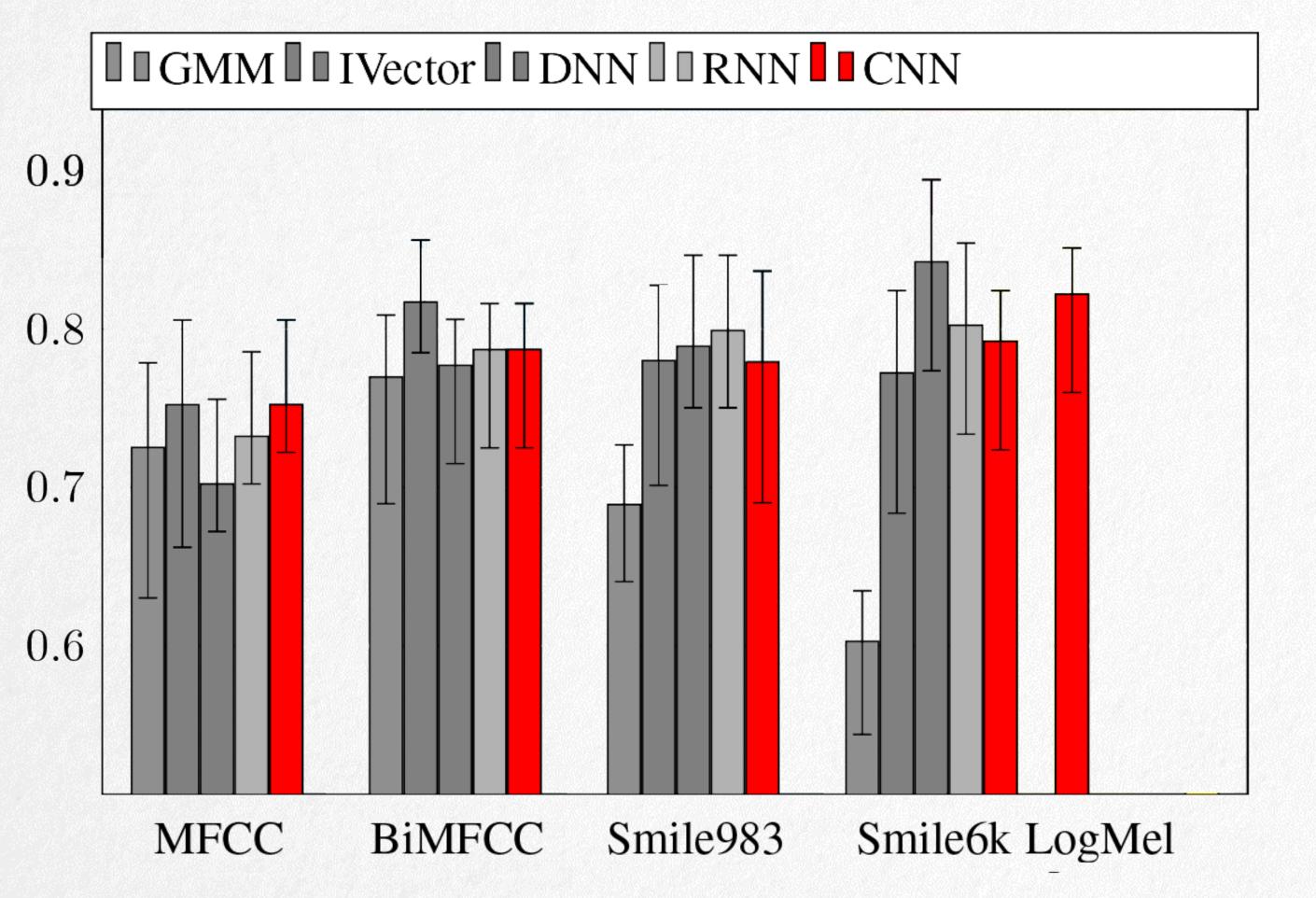
MaxPool2×2+Dropout0.3

Softmax

BN: Batch Normalization ReLu: Rectified Linear Activation Function

CONVOLUTIONAL NEURAL NETWORK (CNN)

4- fold CV avg. accuracy



A COMPARISON OF DEEP LEARNING METHODS FOR ENVIRONMENTAL SOUND DETECTION

Better Performance with Larger Features

MFCC/BiMFCC: 12 layers / 1.6M params

Smile983 / Smile6k: 12 layers / 2.6M params

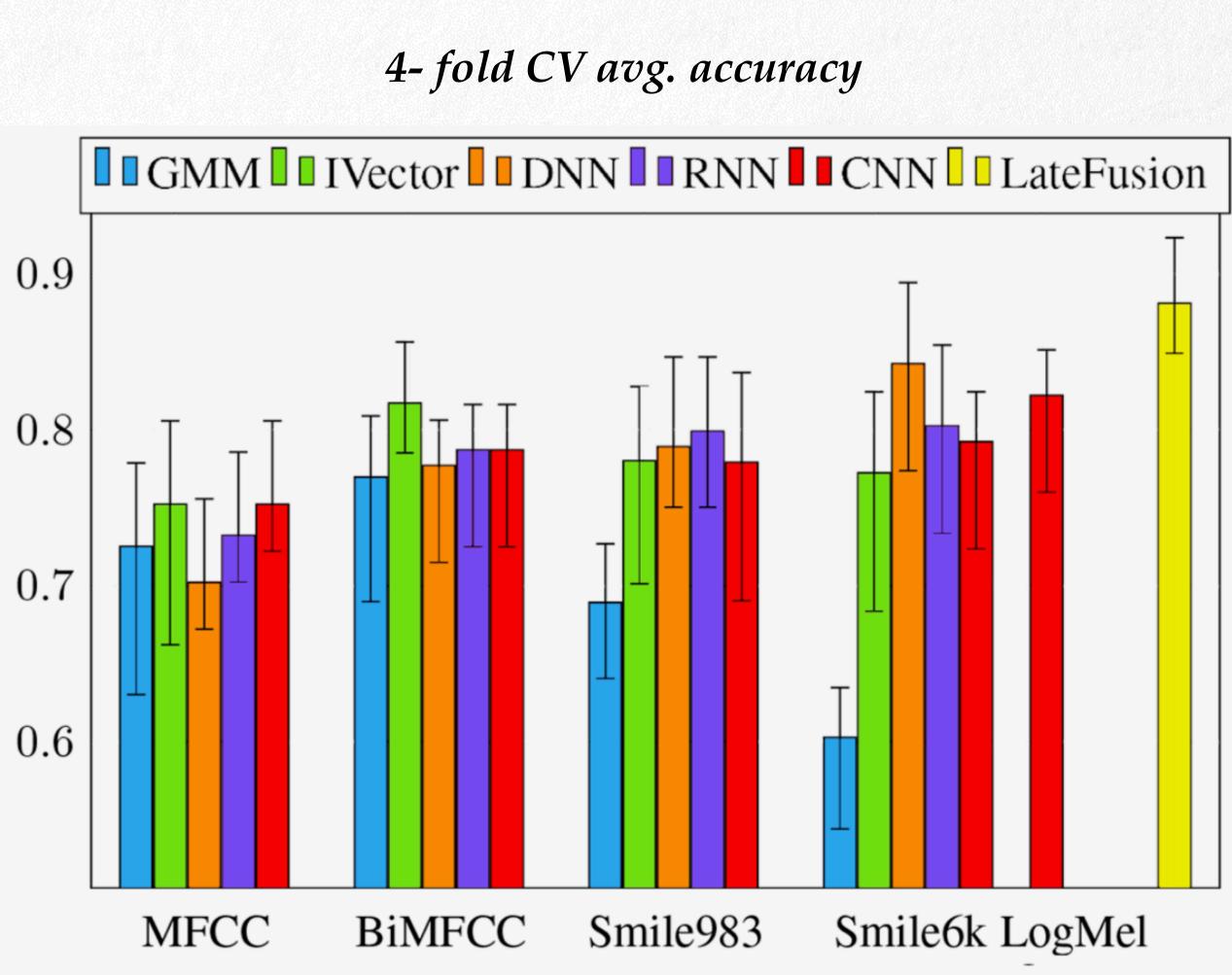
LogMel: 12 layers / 3.6M params

N | JUNCHENG (BILLY) LI | BOSCH | Carnegie Mellon University

MODEL ENSEMBLING

- Weighted averaging or voting of a collection of models
- Member models must be accurate and diverse
- Ensembling reaches 88.2%

DEEP LEARNING METHOD



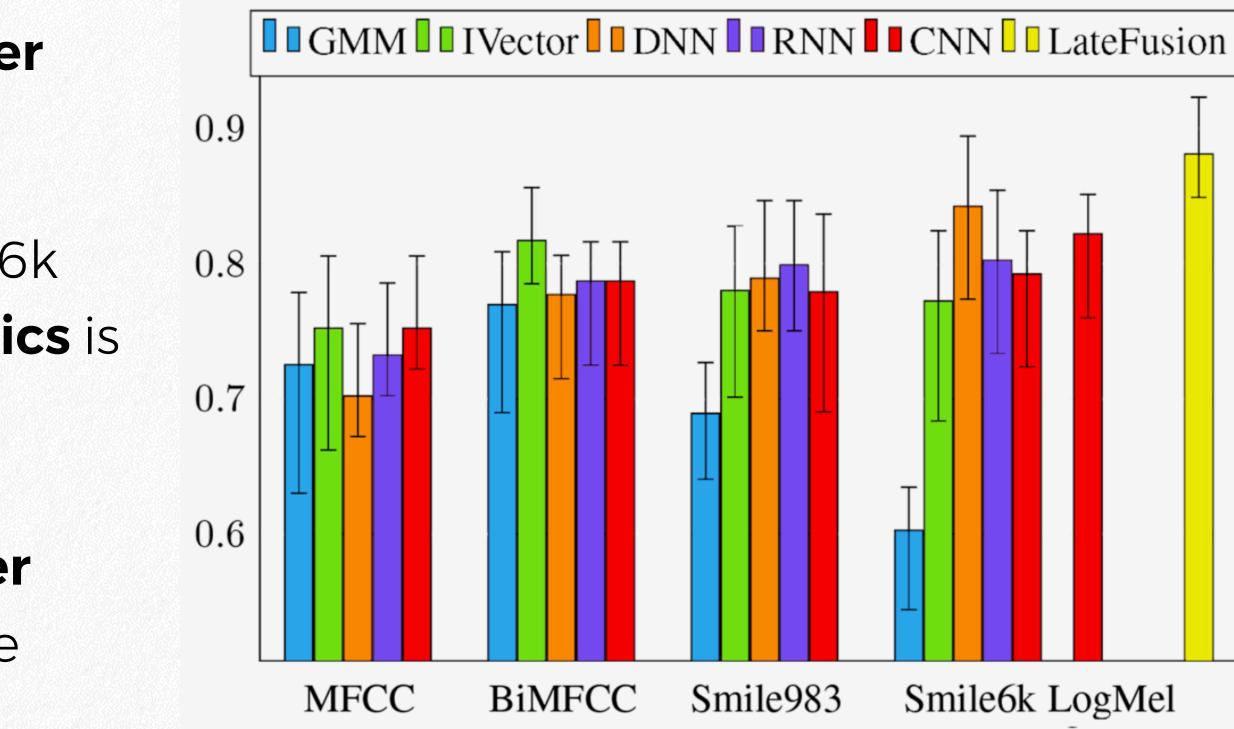
JUNCHENG (BILLY) LI BOSCH **Carnegie Mellon University**

COMPARISON OF MODELS

- For neural network models (CNN, DNN, RNN), larger feature set produces higher accuracy
- RNN do not outperform DNN for Smile6k
 feature, showing that temporal dynamics is
 relatively weak
- RNN, CNN outperforms DNN on smaller
 features (MFCC, Smile983), as sequence
 input implicitly enhances feature
 complexity

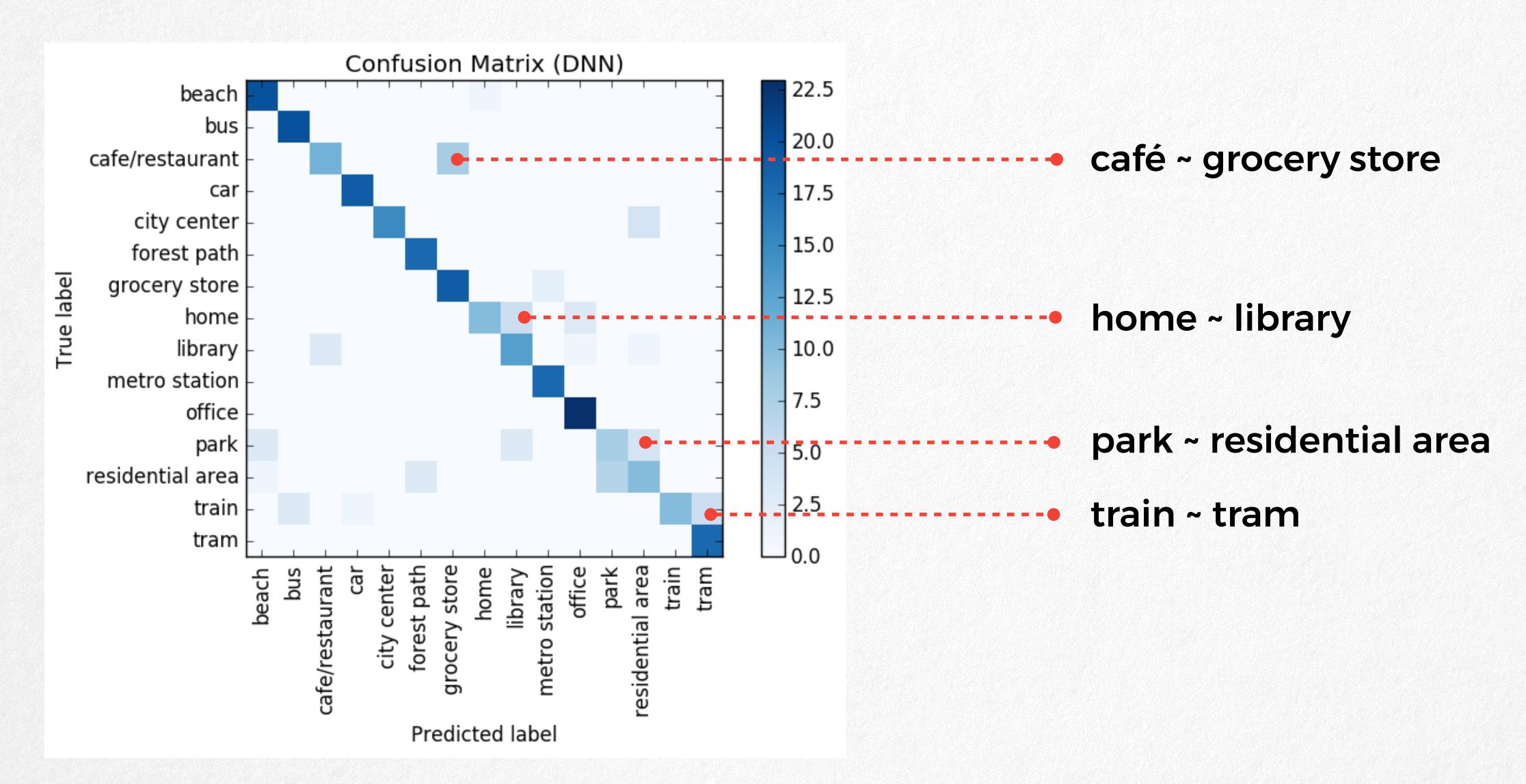
DEEP LEARNING METHOD

4- fold CV avg. accuracy



ETECTION | JUNCHENG (BILLY) LI | BOSCH | Carnegie Mellon University

DISCUSSION



A COMPARISON OF DEEP LEARNING METHODS FOR ENVIRONMENTAL SOUND DETECTION | JUNCHENG (BILLY) LI | BOSCH | Carnegie Mellon University

CLASS WISE ACCURACY

	GMM	I-Vector	DNN	RNN	CNN	Fusion
Beach	69.3	80.7	89.8	80.3	78.7	92.3
Bus	79.6	82.4	95.3	88.6	72.1	95.3
Cafe/Rest.	83.2	70.0	69.9	64.7	66.4	79.9
Car	87.2	96.1	87.2	88.8	99.1	97.2
City	85.5	90.0	97.3	96.2	93.5	89.2
Forest	81.0	92.0	96.4	95.0	99.8	99.8
Grocery	65.0	93.8	79.3	75.5	85.3	96.2
Home	82.1	65.2	84.8	75.7	82.9	88.2
Library	50.4	76.1	81.2	81.6	72.7	86.2
Metro	94.7	83.5	97.3	93.7	98.7	92.3
Office	98.6	93.1	99.7	79.6	97.6	99.7
Park	13.9	78.6	49.4	45.8	45.7	71.2
Resident	77.7	66.5	76.9	68.7	81.6	77.0
Train	33.6	72.4	51.1	61.2	59.2	65.2
Tram	85.4	84.6	97.0	90.7	91.7	92.2
Average	72.5	81.7	84.2	80.2	82.2	88.1

Class-wise accuracy (%) of the best CV average models. Colored rows correspond to the most challenging classes in the confusion matrix from

A COMPARISON OF DEEP LEARNING METHODS FOR ENVIRONMENTAL SOUND DETECTION | JUNCHENG (BILLY) LI | BOSCH | Carnegie Mellon University

CONCLUSION

- Feature extraction is key
- Deep learning models > traditional ones (GMM, i-vector)
- Environmental sound has weak temporal dynamics (DNN > recurrent networks)
- CNN, RNN don't do well (not enough data to learn better features than signal processing features)
- Ongoing work: Transfer Learning, Attention model, Raw Wave Input

ETECTION | JUNCHENG (BILLY) LI | 🕞 BOSCH | Carnegie Mellon University

Thank you

By JUNCHENG (BILLY) LI

Ð

for listening

A COMPARISON OF DEEP LEARNING METHODS FOR ENVIRONMENTAL SOUND DETECTION

JUNCHENG (BILLY) LI Carnegie Mellon University A COMPARISON OF DEEP LEARNING METHODS FOR ENVIRONMENTAL SOUND DETECTION

BACK - UP SLIDES

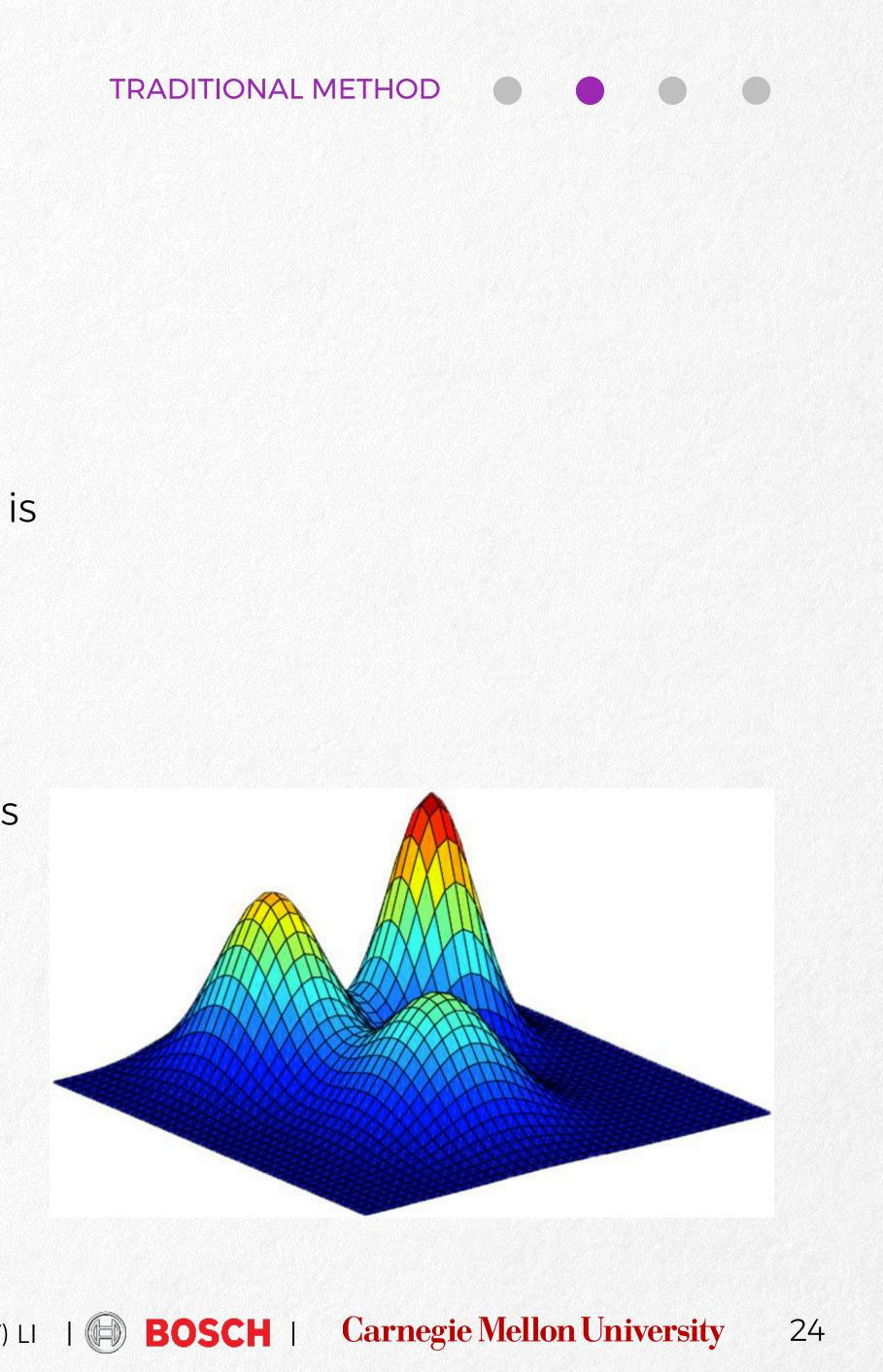
GAUSSIAN MIXTURE MODEL (GMM)

- Previous state-of-art speech & acoustic modeling
- Model each class with mixture of Gaussians. The probability for class j is

$$p^{j}(\boldsymbol{x}) = \sum_{k=1}^{K} \pi_{k}^{j} \mathcal{N}(\boldsymbol{x} | \boldsymbol{\mu}_{k}^{j}, \boldsymbol{\Sigma}_{k}^{j})$$

Prediction sums over all audio segments, the pick the most likely class

$$\arg\max_{j}(\hat{p}^{j} = \sum_{i} p_{i}^{j})$$

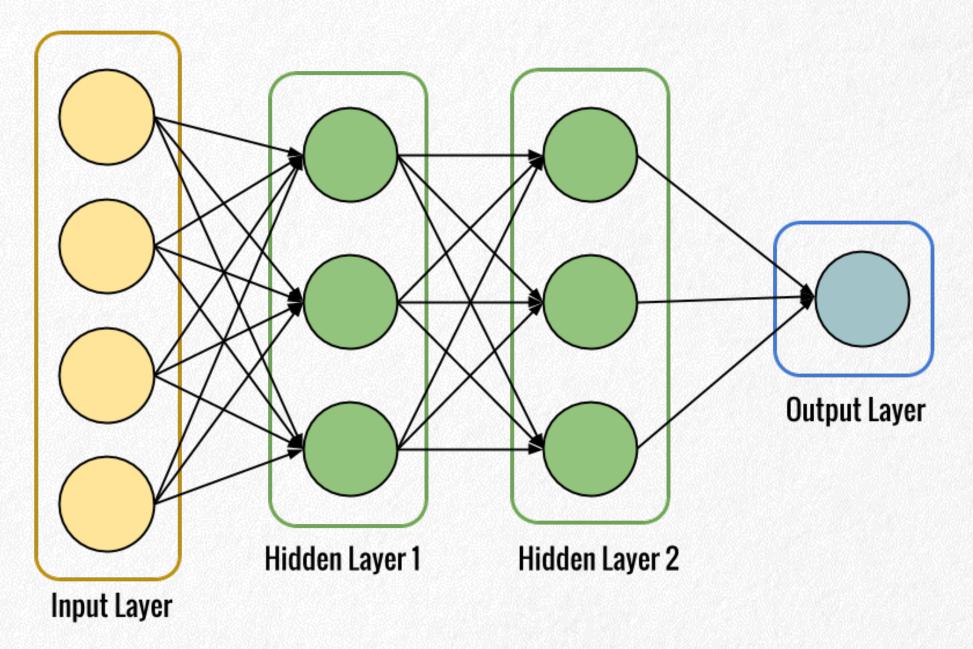


JUNCHENG (BILLY) LI

DEEP NEURAL NETWORK (DNN)

- Each node ("neuron") introduces non-linearity
- **Each layer introduces non-linearity**
- Architectural choice:
 - Types of neuron (which function to use)(relu, prelu...) •
 - Number of layers (3,5,10, 12...) •
 - Number of neurons (256, 512 ...)
 - Dropout (0-1) •
 - **Batch normalization**
 - Optimizer (RMSprop, adadelta, SGD) •

DEEP LEARNING METHOD

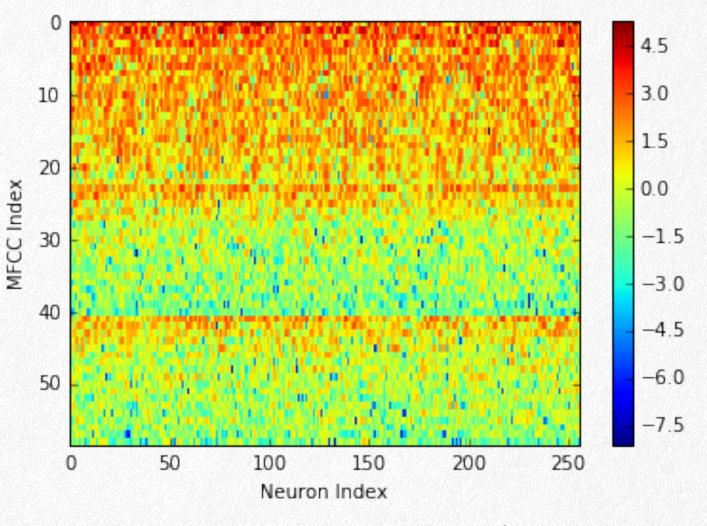


Carnegie Mellon University JUNCHENG (BILLY) LI

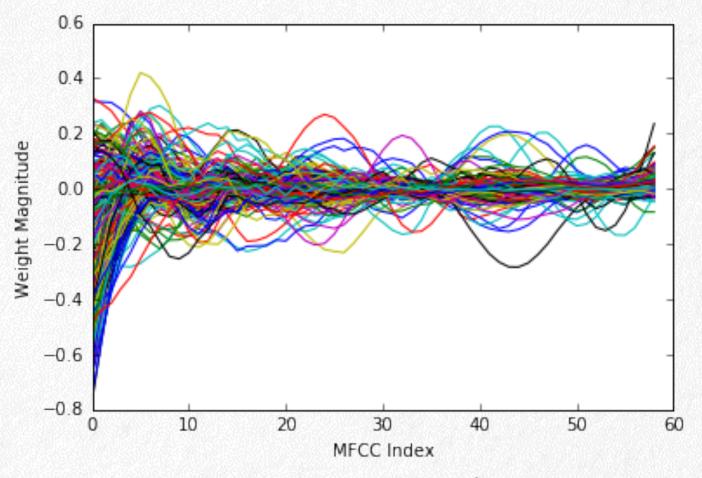
DEEP NEURAL NETWORK (DNN) SOME OBSERVATIONS

- DNN's neurons are more **active** in the MFCC range (0-23) and are less active in the delta of MFCC (24-41) and double delta dimension (42-61).
- If we apply Savitzky-Golay **smoothing** function [24] which acts like a low-pass filter on each neuron's vector (61-dim). We get Figure2(b) which is the denoised weight of layer (each colored line corresponds with one neuron vector), which looks like a filter bank.

DEEP LEARNING METHOD



DNN's 1st layer Weight after FFT



DNN's 1st layer Weight after Smoothing

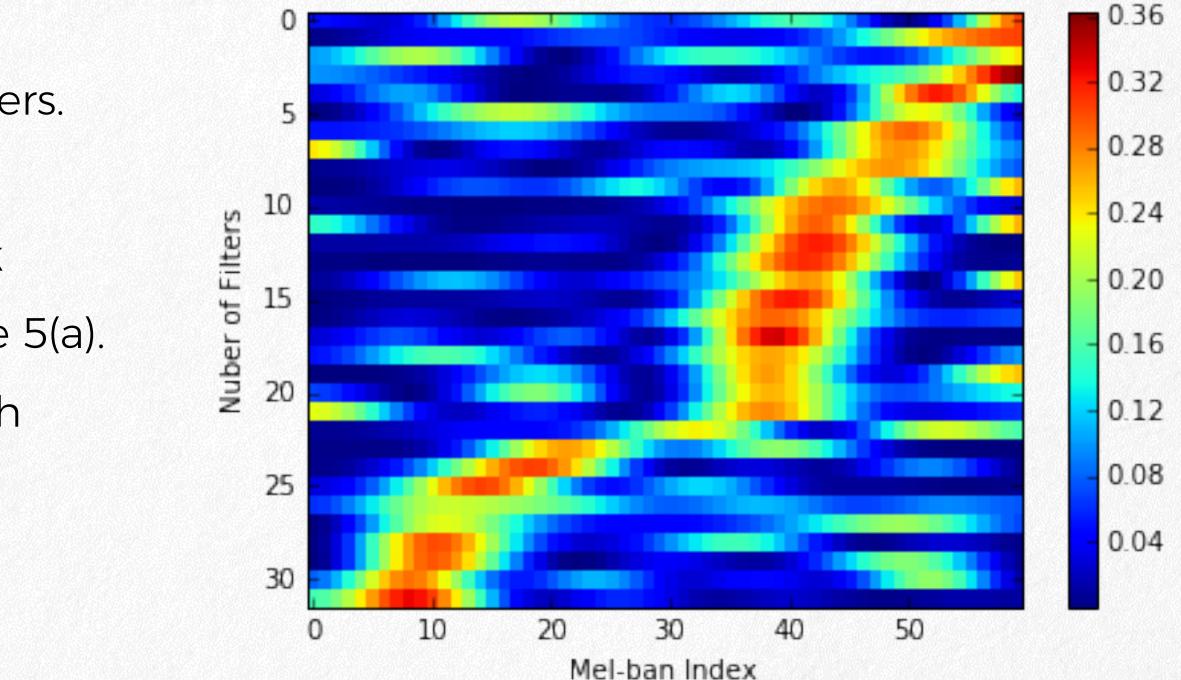
JUNCHENG (BILLY) LI BOSCH

Carnegie Mellon University

CONVOLUTIONAL NEURAL NETWORK (CNN) SOME OBSERVATIONS

This highly resembles a filter bank of bandpass filters. We notice there is **a sharp transition** in filters at around the **40th** Mel band. This is due to the **weak energy** beyond the 40th Mel band shown in Figure 5(a). Our finding is consistent with prior work on speech data [26]. The filter bank we learned are relatively **wider** compared with that is learned in speech.

DEEP LEARNING METHOD



CNN 1st Convolutional2D layer's Weight after FFT

ETECTION | JUNCHENG (BILLY) LI | BOSCH | Carnegie Mellon University

