Methodology:

We trained eight models from six different
architectures for wake-word detection using the
Google Speech Commands dataset. Models were
trained on GPU using PyTorch, and were not
pretrained or fine-tuned.

Models were tested both digitally and over-the-air
on both GPU and CPU.

In over-the-air trials, real-time audio data was sent
as input to the models.

F1 Scores and Accuracy

GPU vs. CPU F1 Scores

Digital M Over-The=Air GPU (M1 MacBook Pro) Over-The-Air CPU (Raspberry Pi 4B)

100.00%
75.00%
<
8 5000%
(72}
-
TR
25.00%
0.00%
DSCNN ResNet50 Transformer EfficientNet_b1 EfficientNetV2_m EfficientNet_b7 EfficientNetV2_xI

VGG19_bn

Architecture

Model performance often decreases
moving from digital to over-the-air

Almost all models performed better
over-the-air on GPU than on CPU.

A practical baseline exploring real-world performance of wake-word detection architectures

on parallel vs. sequential devices.

Efficiency and accuracy do not linearly translate from CPU to GPU between models. This is
due to models' structural differences and varying abilities to exploit hardware optimization.

Post-training quantization is a promising option for increasing model efficiency in real-world

contexts, noticeably decreasing models' inference time while not harming accuracy.

Over-The-Air Latency (ms): GPU vs CPU

2000.0

1500.0

1000.0

Latency (ms)

500.0

M GPU (M1 MacBook Fra) CPU (Raspberry Pi 4B)

0.0 -

VEGTE_bn DSCNN ReshMetso Transfarmer EfficientMet_b1 EfficientMetv2_m EfficientMNet_b7 EfficientNetVv2_xl

Architecture

Over-The-Air Percentage Average Runtime GPU vs CPU: Breakdown by Model

100%

75%

50%

25%

Percentage Average Runtime

0%

of Parameters

GPU CPU GPU CPU GPU CPU GPU CPU GPU CPU GPU CPU GPU CPU GPU CPU 100%
[] — - - (s

39.03

43.22 -
26.25 28.69
32.52

- 42.25

34.07 1994

34.98

75%

35.09

50%

25%

22.7

0%

VGG19 bn DSCNN EfficientNet b1 EfficientNet b7 EfficientNetV2_m EfficientNetV2_xl Resnet50 Transformer

38.9M 2.23M 7.80M 66.0M 53.5M 207M 23.5M 0.607M

Architecture

The fastest model on GPU is not always the fastest model on CPU. Model
structure has a strong impact on latency changes between GPU and CPU.

For convolution-heavy models, this results from hardware optimization
for matrix multiplication. Regular convolution is more parallelizable than
MBConv blocks, but also has higher work, making it perform better on GPU
than CPU, and vice versa.

B GELU
Linear

B LayerNorm

@ AvgPool
Dropout

Multi-Head
Attention

B MaxPool

B SsiLU
RelLU
BN

@ Conv

Quantized vs. Unquantized Latency (ms) on CPU

Latency (ms)

B float32 int8
400
300
200
100
0
VGG19 bn DSCNN

Architecture

Post-training quantization yields a noticeable decrease
in latency; however, the decrease is below the
theoretical threshold and is not consistent between
models.

This may result from caching, as VGG19_bn uses
computation-heavy regular convolution, which is more
likely to have poor locality than DSCNN's MBConv
convolution.

