Dissecting Efficient Architectures for Wake-Word detection

Cody Berger, Juncheng B. Li, Yiyuan Li, Aaron Berger, Dmitri Berger, Karthik Ganesan, Emma Strubell, Florian Metze

codyberger@cmu.edu, junchel@cs.cmu.edu Contact:

Methodology:

We trained eight models from six different architectures for wake-word detection using the Google Speech Commands dataset. Models were trained on GPU using PyTorch, and were not pretrained or fine-tuned.

Models were tested both **digitally and over-the-air** on both GPU and CPU.

In over-the-air trials, **real-time audio data** was sent as input to the models.

F1 Scores and Accuracy PU vs. CPU F1 Scores 50.00% Architectu

Model performance often decreases moving from digital to over-the-air

Almost all models performed better over-the-air on GPU than on CPU.

Is NAS Efficiency Transferable?

Models designed by Neural Architecture Search on GPU demonstrate poor efficiency on CPU, suggesting NAS GPU optimization isn't necessarily applicable to CPU.

Over-The-Air Percentage Average Runtime GPU vs CPU: Breakdown by Model

A **practical baseline** exploring real-world performance of **wake-word detection** architectures on parallel vs. sequential devices.

Efficiency and accuracy do not linearly translate from CPU to GPU between models. This is due to models' structural differences and varying abilities to exploit hardware optimization.

Post-training quantization is a promising option for increasing model efficiency in real-world contexts, noticeably decreasing models' inference time while not harming accuracy.

The fastest model on GPU is not always the fastest model on CPU. Model structure has a strong impact on latency changes between GPU and CPU.

For convolution-heavy models, this results from hardware optimization for matrix multiplication. Regular convolution is more parallelizable than MBConv blocks, but also has higher work, making it perform better on GPU

