
 Model performance often decreases
 moving from digital to over-the-air

 Almost all models performed better
 over-the-air on GPU than on CPU.

 The fastest model on GPU is not always the fastest model on CPU. Model
 structure has a strong impact on latency changes between GPU and CPU.

 For convolution-heavy models, this results from hardware optimization
 for matrix multiplication. Regular convolution is more parallelizable than
 MBConv blocks, but also has higher work, making it perform better on GPU
 than CPU, and vice versa.

GPU CPU GPU CPU GPU CPU GPU CPU GPU CPU GPU CPU GPU CPU GPU CPU

38.9M 2.23M 7.80M 66.0M 53.5M 207M 23.5M 0.607M# of Parameters

Methodology:

We trained eight models from six different
architectures for wake-word detection using the
Google Speech Commands dataset. Models were
trained on GPU using PyTorch, and were not
pretrained or fine-tuned.

Models were tested both digitally and over-the-air
on both GPU and CPU.

In over-the-air trials, real-time audio data was sent
as input to the models.

F1 Scores and Accuracy
Quantization

 Post-training quantization yields a noticeable decrease
 in latency; however, the decrease is below the
 theoretical threshold and is not consistent between
 models.

 This may result from caching, as VGG19_bn uses
 computation-heavy regular convolution, which is more
 likely to have poor locality than DSCNN's MBConv
 convolution.

Dissecting Efficient Architectures
for Wake-Word detection

Cody Berger, Juncheng B. Li, Yiyuan Li, Aaron Berger,
Dmitri Berger, Karthik Ganesan, Emma Strubell,
Florian Metze

Contact: codyberger@cmu.edu, junchel@cs.cmu.edu

 Layer Efficiency in the Spotlight

A practical baseline exploring real-world performance of wake-word detection architectures
on parallel vs. sequential devices.

Efficiency and accuracy do not linearly translate from CPU to GPU between models. This is
due to models' structural differences and varying abilities to exploit hardware optimization.

Post-training quantization is a promising option for increasing model efficiency in real-world
contexts, noticeably decreasing models' inference time while not harming accuracy.

 Is NAS Efficiency Transferable?

Models designed by Neural Architecture Search on

GPU demonstrate poor efficiency on CPU,

suggesting NAS GPU optimization isn't necessarily

applicable to CPU.

